
Beyond
Functional

Photo by Juan Sisinni on Unsplash

by Paul Slaughter

https://unsplash.com/@juansisinni?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/piano-interior?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Paul Slaughter

Title: Senior Frontend Engineer @ GitLab

Education: Masters in Software Engineering

Interests: Programming, music, art, writing, BJJ

 https://souldzin.com/

@souldzin

@souldzin or @pslaughter

@souldzin

https://conventionalcomments.org

https://www.youtube.com/channel/UCTleK5BarSReiZMxZSvnNQA

https://souldzin.com/
https://conventionalcomments.org
https://www.youtube.com/channel/UCTleK5BarSReiZMxZSvnNQA

Requirement: When user hits the “Play” button,
selected song plays.

https://en.wikipedia.org/wiki/File:Zune80and4.jpg

https://commons.wikimedia.org/wiki/File:Ipodclassic80gb.jpg

Same requirements...

What separates a poor
implementation from a loveable
one?

Sometimes the user doesn’t even know!
Photo by Rayson Tan on Unsplash

https://unsplash.com/@raysontjr?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/electronics?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

From Chapter 4:
“...many factors determine the qualities that
must be provided for in a system’s
architecture. The qualities go beyond
functionality…”

“Systems are frequently redesigned not
because they are functionally deficient... but
because they are difficult to maintain, port, or
scale; or the are too slow; or they have been
compromised by hackers.”

Requirements

Design

Implementation

❗

❗❗

❗ ❗ ❗

Software Development Activities
Requirements issues are
the most expensive!

Requirement

Business
value

Architecture
effect

Not all requirements are the same!

What if we missed a high “Value” + high
“Architecture” requirement? What about a high
“Value” + low “Architecture” requirement?

Photo by Mia Baker on Unsplash

https://unsplash.com/@miabaker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/business?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Functional Requirements

What the system does. Specific behavior of
the system. How the system does the thing. A trait of the

system’s behavior.

Non-Functional Requirements
(AKA Quality Attributes)

Which is likely an Architecturally Significant Requirement?

Photo by Alexandre Debiève on Unsplash

https://unsplash.com/@alexkixa?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/electronics?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Did you remember to ask for
the quality attributes?

Oh yes. The customer said it
needed to be really good.

We can do better!

https://en.wikipedia.org/wiki/List_of_system_quality_attributes

https://en.wikipedia.org/wiki/List_of_system_quality_attributes

Functionality

Usability

Reliability (incl. Availability, Resiliency, Stability)

Performance (incl. Speed, Efficiency)

Supportability (aka. Maintainability)

+ (and more!)

https://web.archive.org/web/20201112020231/http://www.ibm.com/developerworks/rational/library/4706.html#N100A7

For some reason, incl. “Security”

Security

Maintainability, (and more!)

https://web.archive.org/web/20201112020231/http://www.ibm.com/developerworks/rational/library/4706.html#N100A7

Keep in mind!

- Quality attributes are at odds with each
other.

- Lists are not complete!
- Try to disprove your understanding of the

problem (hypothesis testing).

Photo by Julia Joppien on Unsplash

https://unsplash.com/@shots_of_aspartame?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/notes?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Let’s explore some
quality attributes!

👩 Actors

End User

💭 Goals 📈 Measures

Learn how to use the
system.

Use the system
efficiently.

Minimize user errors.

Adapt to user
environment.

● Time to complete a
task (for
newcomers/experts)

● Number of user
errors

● Variety of user
environments

● User satisfaction

Usability

Usability Tactics

Architecture

Involve UX-pert in
requirements and code
review

Involve actual users

Use UI component
framework [1] and design
system [2].

Photo by Marissa Lewis on Unsplash

Architect for
most-constrained
environment first

Prioritize user-error
prevention, recovery, and
reporting (e.g. cancel/undo
actions, helpful error
messages).

Process

[1]: https://tailwindui.com/
[2]: https://design.gitlab.com/

https://unsplash.com/@doscocoslocos?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/working?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://tailwindui.com/
https://design.gitlab.com/

Usability Case - balenaEtcher

https://www.balena.io/etcher/

https://www.balena.io/etcher/

Usability Case - Boeing 737

Photo by Dan Lohmar on Unsplash

https://theaircurrent.com/aviation-safety/checklists-come-into-focus-as-pace-setter-for-737-max-return/

https://unsplash.com/@dlohmar?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/boeing?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://theaircurrent.com/aviation-safety/checklists-come-into-focus-as-pace-setter-for-737-max-return/

Usability Cases - vim

https://commons.wikimedia.org/wiki/File:Vim-8-2--plus-vim-go--plus-tagbar.png

https://www.vim.org/

https://www.vim.org/

👩 Actors

Internal/External
“Client”

💭 Goals 📈 Measures

Respond normally.

If fault, respond with
information.

If fault, recover quickly.

● Uptime

● Time to detect fault

● Time to recover from
fault

Reliability

Reliability Tactics

Detect Faults Recover from Faults Prevent Faults

Active redundancy

Passive redundancy

Retry

Rollback

Tracing

Transactions

End-to-end shadow
testing [1]

Exceptional unit
testing

[1]: https://docs.gitlab.com/14.4/ee/development/testing_guide/end_to_end/index.html

Monitoring

Ping/Echo

Self-test

https://docs.gitlab.com/14.4/ee/development/testing_guide/end_to_end/index.html

Reliability Case - Netflix

[1]: https://netflixtechblog.com/fault-tolerance-in-a-high-volume-distributed-system-91ab4faae74a
[2]: https://netflix.github.io/chaosmonkey/

https://netflixtechblog.com/fault-tolerance-in-a-high-volume-distributed-system-91ab4faae74a
https://netflix.github.io/chaosmonkey/

Reliability Case - HealthCare.gov

https://www.computerworld.com/article/2485995/6-software-development-lessons-from-healthcare-gov-s-failed-launch.html

https://www.computerworld.com/article/2485995/6-software-development-lessons-from-healthcare-gov-s-failed-launch.html

Thoughts on Performance

- Performance is the “enemy” of all other
quality attributes.

- Time-complexity and space-complexity
are at odds with each-other.

- There is no perfect system, only “better
fit” ones.

Photo by Melyna Valle on Unsplash

https://unsplash.com/@melynavv?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/speed?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

👩 Actors

Attacker

💭 Goals 📈 Measures

Unauthorized access to
secrets.

Unauthorized data
modification.

Unauthorized change to
system’s behavior.

Reduce availability.

● Time passed before
attack detected.

● Rate of attacks
prevented.

● Security health of
dependencies.

Security

Security Tactics

Resist Attacks React/Recover from Attacks

Revoke access

Maintain audit trail

Restore data

Reset compromised secrets

Identify + authenticate actors

Limit process access

Keep dependencies updated

Use battle-tested frameworks

Photo by AltumCode on Unsplash

https://unsplash.com/@altumcode?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/hacker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Security Case - Tay

https://en.wikipedia.org/wiki/Tay_(bot)

How could usability tradeoff
with security?

Photo by AltumCode on Unsplash

https://unsplash.com/@altumcode?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/mac?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

👩 Actors

Developer/
Contributor

💭 Goals 📈 Measures

Fix defect

Add new behavior

Refactor

● Time spent

● Velocity (number of
changes in a time
period)

● Regressions
introduced per
change

● Time for new
contributor to be
productive

Maintainability

Change behavior

Increase Cohesion/Reduce
Coupling

1. Anticipate changes in requirements.
Single-responsibility principle (SRP)
implies that a module should have only 1
reason to change.

2. Hide as much information as possible
between each module.

3. Prefer constraints over convenience.

4. Lint for formatting inconsistencies. This
should free up code review discussions.

Photo by Joel Filipe on Unsplash

https://unsplash.com/@joelfilip?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/architecture?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Prioritize testability

1. Testability implies reduced coupling.

2. Practice Test-Driven-Development when
appropriate.

3. If something is hard to test, it is hard to
maintain.

Photo by Andre Amaral on Unsplash

https://unsplash.com/@amaral_andre?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/bridge?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

The perspective of a newcomer
can be worth 10x than that of a
veteran.

Photo by Barney Yau on Unsplash

https://unsplash.com/@barneyyau?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/work-think?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Let’s talk about
beyond functional
teams.

Photo by Lachlan Gowen on Unsplash

https://unsplash.com/@lachlangowen?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/orchestra?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

“Any organization that designs a
system will produce a design
whose structure is a copy of the
organization's communication
structure”

- Melvin Conway

What are the quality
attributes of your team?

Photo by Lagos Techie on Unsplash

https://unsplash.com/@heylagostechie?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/mentor?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

https://about.gitlab.com/handbook/values

https://about.gitlab.com/handbook/values

Collaboration Tactics

Culture Practice

Pair programming (sync)

Code Review (async)

“Everyone can contribute”

Short toes

No ego + eliminating internal
competition

Photo by Patrick Turner on Unsplash

https://unsplash.com/@redgreenblue?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/network?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Iteration Tactics Transparency Tactics

Everything is public by default

Information is broadcast across
relevant channels

Always say “Why” not just
“What”

“Everything is in draft”

Minimal-Viable-Changes

Make Two-Way Door Decisions

Changing proposals isn’t
iteration

Photo by riccardo oliva on Unsplash

https://unsplash.com/@riccardo__oliva?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/architecture?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by Pawel Nolbert on Unsplash

Final Thoughts
There is no perfect system.

You must invest in problem analysis.

Realize quality attributes by formalizing
and prioritizing them.

https://unsplash.com/@hellocolor?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/cyberpunk?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

SEE YOU SPACE COWBOY...

What about agile?

Do we know enough about the requirements to make an
architectural decision?

If not, how can we reduce risk of unknown Architecturally
Significant Requirements?

Small feedback loops, of course!

http://www.extremeprogramming.org/index.html

http://www.extremeprogramming.org/index.html

What about open source projects?

There’s a huge win, but
also a cost with open
source.

Open Source Wins Open Source Costs

Direct involvement with
consumers.

Large workforce of
contributors.

Good report with wider
developer community.

Investment in newcomer
friendliness.

Investment in code review
maintainers and quality
automation.

All bugs are shallow.

Risk of “Fork & Profit”
(depends on license)

But if you’re already acting
like an open-source
organization, then the cost
is moot.

