Beyond
Functional

by Paul Slaughter

https://unsplash.com/@juansisinni?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/piano-interior?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Paul Slaughter

Title: Senior Frontend Engineer @ GitLab
Education: Masters in Software Engineering

Interests: Programming, music, art, writing, B

conventional: comments

Comments that are easy to grok and grep

https://conventionalcomments.org

osfn()

https://www.youtube.com/channel/UCTleK5BarSReiZMxZSvnNQA

@ https://souldzin.com/

v @souldzin or @pslaughter

@souldzin
‘* @souldzin

https://souldzin.com/
https://conventionalcomments.org
https://www.youtube.com/channel/UCTleK5BarSReiZMxZSvnNQA

Requirement: \When user hits the “Play” button,

selected song plays.

Mmusic
videos music
1 | i0 @

Pl Ct'u’re S \;glicct% rés

| social (social

\ radio

e a¥s) - l§ed

ol &

https://en.wikipedia.org/wiki/File:Zune80and4.jpg

Il radio ‘

[| |
Nnndcacten |

|

s://commons.wikimedia.org/wiki/FiIe:ipo&gEgs

Same requirements...

What separates a poor
implementation from a loveable
one?

Cometimee the veer doeen’t even know!

Photo by Rayson Tan on Unsplash

https://unsplash.com/@raysontjr?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/electronics?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

7
L4 £
&

o
z,
(3
"
~
z
5
z
w
1)
x
<
3
»
-
0
)
z
)
-
~
Y
)

Software
Architecture
in Practice

THIRD EDITION

- Paul Clements

Rick Kazman

From Chapter 4:

“...many factors determine the qualities that
must be provided for in a system’s
architecture. The qualities go beyond
functionality..."

“Systems are frequently redesigned not
because they are functionally deficient... but
because they are difficult to maintain, port, or
scale; or the are too slow; or they have been
compromised by hackers.”

Requirements icsues are

Software Development Activities

the mogct expen cive!

Requirements

Design

Implementation

Requirement

Architecture
effect

Business
value

Not all requirements are the same!

What if we micced a high Value” + high
Architectvre” requiremen 1?7 What about a high

Value” + low ‘Architectore” requiremen 77

https://unsplash.com/@miabaker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/business?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Functional Requirements

What the system does. Specific behavior of

the system.

Non-Functional Requirements
(AKA Quality Attributes)

How the system does the thing. A trait of the
system’s behavior.

Architectorally Significant Pequirement?
v p-- - =

4
—

g .
& ”
- . 5
. o & ’
o s i i v .
- o - _
o T 5 R - -\ -
.
. v
-

https://unsplash.com/@alexkixa?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/electronics?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Did you remember to ask for
the quality attributes?

—f‘ % Oh yes. The customer said it

needed to be really good.

We can do better!

C @

Permanent link
Page information
Cite this page
Wikidata item

Print/export

Download as PDF
Printable version

Languages o

nMay
Edit links

Quality attributes [edit)

Notable quality attributes include:

« accessibility

« accountability

« accuracy

« adaptability

« administrability

« affordability

« agility (see Common subsets below)
» auditability

« autonomy [Erl]

« availability

« compatibility

« composability [Erl]
« configurability

« correctness

« credibility

« customizability

« debuggability
 degradability

« determinability

« demonstrability

« dependability (see Common subsets below)
« deployability

« discoverability [Erl]
« distributability

« durability

« effectiveness

« efficiency

« evolvability

« extensibility

« failure transparency
« fault-tolerance

« fidelity

« flexibility

inspectability

installability

integrity
interchangeability

interoperability [Erl]

learnability

localizability

maintainability

manageability
mobility
modifiability

modularity
observability
operability

orthogonality

portability

precision

predictability

process capabilities
producibility

provability

recoverability
relevance

Many of these quality attributes can also be applied to data quality.

https://en.wikipedia.org/wiki/List of system quality attributes

N O O

« reliability

« repeatability

« reproducibility

« resilience

* responsiveness

« reusability [Er]

« robustness

« safety

« scalability

» seamlessness

« self-sustainability

« serviceability (a.k.a. supportability)
« securability (see Common subsets below)
« simplicity

« stability

« standards compliance
« survivability
 sustainability

« tailorability

« testability

« timeliness

« traceability

« transparency

* ubiquity

« understandability

« upgradability

« usability

« vulnerability

https://en.wikipedia.org/wiki/List_of_system_quality_attributes

Functionality =~ ~—— For come reason, incl. “Security”
Usability

Reliability (incl. Availability, Resiliency, Stability)

Performance (incl. Speed, Efficiency)

+ (and more!) Maintainability, [am/ morel)

https://web.archive.org/web/20201112020231/http://www.ibm.com/developerworks/rational/library/4706.html#N100A7

Keep in mind!

- Quality attributes are at odds with each
other.

- Lists are not complete!

- Try to disprove your understanding of the
problem (hypothesis testing).

o by Iiia Iopplen on Unsplash

https://unsplash.com/@shots_of_aspartame?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/notes?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Let's explore some
quality attributes!

@ Actors

End User

Usability

Goals

Learn how to use the
system.

Use the system
efficiently.

Minimize user errors.

Adapt to user
environment.

Measures

Time to complete a
task (for
newcomers/experts)

Number of user
errors

Variety of user
environments

User satisfaction

Usability Tactics

Architecture

Involve UX-pertin Architect for
requirements and code most-constrained
review environment first

Involve actual users Prioritize user-error

prevention, recovery, and
reporting (e.g. cancel/undo
actions, helpful error
messages).

Use Ul component
framework "and design
system [2,

[1]: https://tailwindui.com/
[2]: https://design.gitlab.com/

https://unsplash.com/@doscocoslocos?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/working?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://tailwindui.com/
https://design.gitlab.com/

Usability Case - balenaEtcher

https://www.balena.io/etcher/

https://www.balena.io/etcher/

Usability Case - Boeing 737

https://unsplash.com/@dlohmar?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/boeing?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://theaircurrent.com/aviation-safety/checklists-come-into-focus-as-pace-setter-for-737-max-return/

Usability Cases - vim

v cancel(
[field

ildren

es, and Nas No deadil it 15 typicaily used oy tne mawn function, roone() : chan
initializat , and tests, and as the too-level Context for incomi +Err() error
s,) string.
== Omni completion (AOANAP) match 2 of 10

tps://www.vim.org

https://www.vim.org/

@ Actors

Internal/External
“Client”

Reliability

Goals

Respond normally.

If fault, respond with
information.

If fault, recover quickly.

.~/ Measures

Uptime
Time to detect fault

Time to recover from
fault

Reliability Tactics

/\

Detect Faults Recover from Faults Prevent Faults

| |

Monitoring Active redundancy Transactions
Ping/Echo Passive redundancy End-to-end shadow
testing !
Self-test Retry
Exceptional unit
Rollback testing
Tracing

[1]: https://docs.gitlab.com/14.4/ee/develo i uide/end to end/index.html

https://docs.gitlab.com/14.4/ee/development/testing_guide/end_to_end/index.html

Reliability Case - Netflix

[1]: https://netflixtechblog.com/fault-tolerance-in-a-high-volume-distributed-system-91ab4faae74a
[2]: https://netflix.github.io/chaosmonkey/

https://netflixtechblog.com/fault-tolerance-in-a-high-volume-distributed-system-91ab4faae74a
https://netflix.github.io/chaosmonkey/

Reliability Case - HealthCare.gov

HealthCare.gov

https://www.computerworld.com/article/2485995/6-software-development-lessons-from-healthcare-gov-s-failed-launch.html

Thoughts on Performance

- Performance is the “enemy” of all other
quality attributes.

- Time-complexity and space-complexity
are at odds with each-other.

- There is no perfect system, only “better
fit” ones.

https://unsplash.com/@melynavv?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/speed?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

@ Actors

Attacker

Security

Goals

Unauthorized access to
secrets.

Unauthorized data
modification.

Unauthorized change to
system’s behavior.

Reduce availability.

Measures

Time passed before
attack detected.

Rate of attacks
prevented.

Security health of
dependencies.

Security Tactics

/\

Resist Attacks

|

Identify + authenticate actors
Limit process access
Keep dependencies updated

Use battle-tested frameworks

React/Recover from Attacks

|

Revoke access
Maintain audit trail
Restore data

Reset compromised secrets

https://unsplash.com/@altumcode?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/hacker?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Security Case - Tay

TayTweets 6

The official account of Tay, Microsoft's A.l. fam from the internet that's got zero
chill!l The more you talk the smarter Tay gets

These Tweets are
protected

https://en.wikipedia.org/wiki/Tay_(bot)

Photo by

AltumCode on

uptime) a9p) controllrs) @ Accountphe.

W Project v

B tHuptime (Library/WabServer/Documen
- vme

o
Obutem o W

Unsplash

tYou

el 87000

<?ohp

nanespace ALtus\Controlle

{class Account extends Controller {
pUbldc function dndex() {

Authentication: :guand();

/# Propare the TaoFA codes Just in case we need thea +/
$twota = new wth\TngFactorAuth(settings O->title, digs: 6, pe.
Stuofa._secret = $twofa->greateSecretO;

$twofa.inage = Stwofa->getiRCodeTasoehsDatalied ($this->H->name, $twofa.

ifClenpty($PosT) {

/+ Clean sone posted variables +/
$_PoSTL enail’] Filter_var(s_POSTL ‘enail'],
$.PoSTI'name'] = Filter_van($_POSTL ‘nane'],

fiter: FILTER_SAMITL:
fiker: FILTER.

$_POSTL tuofa_is_e (boo1) $_PoSTI tuofa.is_enabled'];

$_PoSTL ot to trin(Filtor_var(s_POSTL "
$tuota._secrot $_POSTI tuofs. s enable'] 2 Sthis->[l

[+ Billing +/
$F(enpty($this->user->payment_subscription 1)) {
5] PR ot

$_POST bitLing.nane"] = trin(Databaso: :cleon_string($_POSTLbill
$_POSTIbiTLing_addness'] = trinatabaso: :cleon.string($_POSTL b

Aecant

Wiconroters

19.tvoe

STz
$_POSTI"timezone'] = dn_array($_POSTI ' tinezone'], \DateTineZone::Lis

_token'],

How could usability tradeoftf
with security?

https://unsplash.com/@altumcode?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/mac?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Maintainability

@ Actors Goals ~/ Measures

e Time spent

Fix defect .

e Velocity (hnumber of
changesin a time
period)

Add new behavior e Regressions
introduced per
change

Developer/ _

Contributor Change behavior e Time for new
contributor to be
productive

Refactor

Increase Cohesion/Reduce
Coupling

1. Anticipate changes in requirements.
Single-responsibility principle (SRP)
implies that a module should have only 1
reason to change.

2. Hide as much information as possible
between each module.

Prefer constraints over convenience.

4, Lint for formatting inconsistencies. This
should free up code review discussions.

https://unsplash.com/@joelfilip?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/architecture?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Prioritize testability

1. Testability implies reduced coupling.

2. Practice Test-Driven-Development when
appropriate.

3. If something is hard to test, it is hard to
maintain.

https://unsplash.com/@amaral_andre?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/bridge?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo

The perspective of a newcome
can be worth 10x than that of a

au on Unsplash |

https://unsplash.com/@barneyyau?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/work-think?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Let's talk about
beyond functional
teams.

https://unsplash.com/@lachlangowen?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/orchestra?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

“Any organization that designs a
system will produce a design
whose structure is a copy of the
organization's communication
structure”

- Melvin Conway

~attr/butes of your team:

Photo by Lagos Techie on Unsplash

https://unsplash.com/@heylagostechie?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/mentor?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

GitLab

Everyone can contribute.

https://about.gitlab.com/handbook/values

Maintained by

You are here: Handbook GitLab Values q
O
1 through the handbook Contribute to this page
View source » Open in Web IDE

Open in Static Site Editor

CREDIT

GitLab's six core values are ¥ Collaboration, ,/ Results ,C Efficiency. Diversity, Inclusion & Belonging, u On this page
Iteration, and @ Transparency, and together they spell the CREDIT we give each other by assuming good intent. We react
to them with values emoji and they are made actionable below.

e CREDIT

e L Collaboration

https://about.gitlab.com/handbook/values

Collaboration Tactics
/\

Culture Practice
“Everyone can contribute” Pair programming (sync)

Short toes Code Review (async)

No ego + eliminating internal
competition

https://unsplash.com/@redgreenblue?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/network?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Iteration Tactics

“Everything is in draft”
Minimal-Viable-Changes
Make Two-Way Door Decisions

Changing proposals isn't
iteration

Transparency Tactics

Everything is public by default

Information is broadcast across
relevant channels

Always say “Why" not just
“What"

https://unsplash.com/@riccardo__oliva?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/architecture?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Final Thoughts

There is no perfect system.
You must invest in problem analysis.

Realize quality attributes by formalizing
and prioritizing them.

https://unsplash.com/@hellocolor?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/cyberpunk?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

SEE YOU SPACE COWBOY...

What about agile?

Do we know enough about the requirements to make an
architectural decision?

If not, how can we reduce risk of unknown Architecturally
Significant Requirements?

Small feedback loops, of course!

Planning/Feedback Loops

Release Plan
Manths
Iteration Plan

Weeks

Acceptance Test
Days

_____—» Stand Up Meeting
One Day
Pair Negotiation

HOLIFS/

Unit Test

Minutes

Pair Programming

Code

http://www.extremeprogramming.org/index.html

http://www.extremeprogramming.org/index.html

Open Ssvrce Wine

Open Sovrce Coste

Direcf involvement with
There's a huge win, but

also a cost with open
source.

consumers.

(arge workforce of

contributors.

But if you're already acting Good report with wider

like an open-source
organization, then the cost
is moot.

a/eve/o,ber community.

Invectment in newcomer

Friendlinecs.

Tnvectment in code review
maintainers and qaa//‘ty

automation.
All bugs are challow.

Rick of ‘Fork & Profit”
(depends on licence)

